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GROWER SUMMARY

Headline

Climate change threatens species interactions in economically important crops leading to
potential pest outbreaks. Understanding the decoupling of these interactions will be crucial in

developing successful IPM practices.

Background

Ecological interactions present one of the greatest challenges to ecological forecasting under
climate change with consequences for economically important ecosystem services such as
biological control. Differences in responses among trophic levels can give rise to
asynchronous dynamics and instability that can yield qualitatively different outcomes to those
predicted by single species models. Functional trait databases provide an essential resource
to help disentangle the mechanistic basis underpinning this complexity and ultimately scale-
up predictions to the community level. We demonstrate this concept using the established
Rosenzweig-MacArthur population model and incorporate temperature-dependence of
important behavioural and physiological traits including functional response parameters from
the Uiterwaal et al. (2018) database. Using pests and parasitoids as a model system, we
explore the consequences of differencesin temperature dependence between traits and

between species.

Summary

Our study revealsthat the thermal response of host intrinsic rate of increase
primarily governs overall pest abundance through a growing
season. When parasitoids share the same thermal optima of their hosts, the addition of
parasitoid temperature-dependent parameters do not significantly influence quantitative or

gualitative outcomes compared to models only containing the aphid response.

When there is a warm adapted parasitoid you can get qualitatively different projections

depending on which temperature-dependent trait you add to the model.

when a parasitoid is cool-adapted, the addition of temperature-dependent parasitoid traits to
a model introduces quantitative noise to model predictions based on the hosts thermal

response.

Our study reveals how an understanding of the differences in the relative thermal
performance among species can explain responses at the population level. Whilst also

providing further considerations for future empirical and theoretical work.
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Financial Benefits

This project is not yet at a stage to deduce potential financial impacts to horticultural
practitioners however using ecological theory and mathematical models we have deduced
further empirical work which would bring us closer to such a stage. Coupling these models
with the consequential economic influence of population dynamics between asynchronous
species would also provide a fruitful area of research to encourage the uptake of IPM
systems.

Action Points

There are no grower action points at this stage of research
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SCIENCE SECTION

Introduction

Anthropogenic climate change threatens natural and managed ecosystems through
increases in mean temperature and climatic variability (Malhi et al., 2020; Turner et
al., 2020). Ecosystems incorporate the interconnected relationships between species,
ranging from resource competition and predation to more complex interactions such
as symbioses and host-parasite interactions (Schippers, Leyequien and Jana, 2021).
To date, research has focused primarily on individual species responses to climate
change, with relatively less work examining how climate change can influence biotic
interactions (Pacifici et al., 2017; Schleuning et al., 2020). The interactions between
species can be dramatically altered by climate change due to differences in the
thermal responses of species (Castex et al., 2018). The resulting asynchronous
dynamics and instability can yield qualitatively different outcomes to those predicted
by single-species models or models that assume shared thermal responses amongst
species (Davidson et al., 2021). This research gap creates a challenge for ecological
forecasting; changes in each species interaction have the potential to cause
cascading effects across ecosystems that are not understood or captured in many
current modelling approaches and therefore cannot currently be mitigated.

The thermal responses of species can be quantified and compared using thermal
performance curves (Huey and Kingsolver, 1989). Thermal performance curves
(TPCs) are typically derived from empirical studies that identify the thermal optimum,
critical minimum temperature (CTmin) and maximum temperature (CTmax) for a
given process or behaviour. It is possible to derive TPCs for different components of
fitness: reproduction, growth and survival, or to quantify the thermal responses of
individual functional traits that influence these three components of fithess (Arnold,
1983; Laughlin and Messier, 2015). The outcomes of an interaction between species
will largely be determined by the integration of those relevant individual species traits
(Dell, Pawar and Savage, 2014). Quantifying and integrating the thermal dependence
of species traits into predictive models is therefore imperative to establish both the

direct and indirect effects of temperature change on species interactions.
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While trait-based approaches are urgently required to assist in predicting species
responses to climate change, a review of 822 functional trait studies identified that
only 23% focused on applying traits in the context of global change and only 3%
generated predictions about patterns of diversity, abundance or distribution beyond
the data used for initial analysis (Green et al., 2021). The recent development of trait
databases of standardised phenotypic data (Violle, Borgy and Choler, 2015) can
facilitate transformative change in this research area. In particular, recently published
temperature-dependent trait databases have the potential to be useful in the context
of understanding and mitigating the likely impacts of climate change on ecosystems.
The temperature-dependent seed germination database by (Durr et al., 2015)
enables the modelling of vegetation boundaries under climate change and may assist
in decision-making regarding future crop cultivation. The FoRAGE database
(Uiterwaal et al., 2018) collates temperature dependent data relating to the functional
response (the relationship between predator search efficiency and resource density)

and is one of the first fauna-based temperature dependent databases.

The interactions between parasitoids and their host species are of great economic
importance due to their use in integrated pest management and biological control in
human-managed agricultural ecosystems (Cullen et al., 2008). Parasitoids and their
hosts therefore represent an important species interaction that faces disruption with
ongoing climate change with clear impacts for human welfare. Parasitoid host species
are frequently agricultural pests (Boivin, Hance and Brodeur, 2012) and range shifts
or population changes of these agricultural pests and their parasitoids with climate
change have the potential to diminish natural pest control and threaten future food
security and sustainability (Thomson, Macfadyen and Hoffmann, 2010). Due to their
economic importance, standardised temperature dependent data have been collected
for over half a century in parasitoids and their hosts, including for example intrinsic
rate of increase (Wyatt and White, 1977), functional response parameters (Holling,
1959) and growth rates. In addition, host-parasitoid systems have an extensive history

in modelling (see Mills and Getz, 1996).
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Using crop pests and parasitoids as a model system, we explore the importance of
between-trait and between-species differences in temperature dependence for
ecological forecasting. We first conduct an elasticity analysis to identify which model
parameters (traits) potentially have the greatest influence over the Rosenzweig-
MacArthur model. We then use the Uiterwaal et al. FORAGE database to identify all
temperature-dependent functional response data that are available for host-parasitoid
combinations. We combine and standardise these empirical data and then fit thermal
performance curves for the functional response and other parameters in the
Rosenzweig-MacArthur model, to identify how trait performance varies in response to
temperature change. This allows us to determine whether the data currently available
for hosts and their parasitoids in the literature conforms to recognised trends in other
organisms, and to identify potential areas requiring further data collection. We then
test how modelling the temperature dependence of different parameters (representing
traits) within population models changes the model predictions. We test a suite of
models that vary in the number of traits that are temperature dependent (otherwise,
trait values are fixed). Comparing the performance of each model, we quantify the
relative importance of thermal dependence in each trait. This approach enables to

address the following research questions:

1. Are the model parameters (functional traits) of the Rosenzweig-MacArthur
model temperature dependent in host-parasitoid systems?

2. Understanding the temperature dependence of which trait/traits is most
important for modelling temperature-driven changes in host-parasitoid
populations?

3. Does the exclusion of trait temperature dependence lead to quantitatively or
gualitatively different model predictions?

4. How does asynchrony in thermal adaptation between host and parasitoid

influence model predictions?

Materials and methods

Data Sourcing
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The FORAGE database (Uiterwaal et al., 2018) was filtered by the field “predator type”
for “Par” to obtain all relevant data on parasitoids. This search yielded 22 datapoints
from 8 studies and across 9 species. We supplemented these data with 15 studies
from the literature to obtain further parameterisations for the Rosenzweig-MacArthur
model, including for both the parasitoid species listed in the database and their
associated hosts that were identified within these experimental studies. These were
discovered on Web of Science and Google Scholar using the scientific names of the
parasitoid/pest as a search term in addition to “temperature”. This yielded an
additional 38 data points for intrinsic rate of increase, 21 data points for assimilation
efficiency and 20 data points for predator mortality rate.

To establish the temperature-dependence of the trait variables in the Rosenzweig-
MacArthur model we analysed a subset of our studies that measured parameter
values at three or more experimental temperatures spanning a range of more than a
10°C. Temperature-dependent intrinsic rate of increase is commonly reported in the
literature for herbivorous insects and we present here data for seven species of aphid.
Thermal performance curves for parasitoids are much less common, and we present
here data for the four parasitoid species that met our selection criteria. While values
for the functional response could be derived from the FORAGE database (Uiterwaal
et al., 2018), it was necessary to obtain temperature-dependent assimilation
efficiency and instantaneous predator mortality rate from the wider literature. Larval
survival rate (also reported as percentage emergence rate) of the parasitoid was used
as a proxy for the former while the slope of the regression line of log survival across
the longevity of an adult parasitoid was used for the latter. The final dataset comprised
39 datapoints across 7 species for intrinsic rate of increase, 13 datapoints across 3
species for attack rate and handling time, 21 data points across 4 species for
assimilation efficiency and 15 datapoints across 4 species for predator mortality rate.

Data transformation

Trait values were standardised prior to further analysis to account for variance among
species and studies. Parameter values were rescaled to a proportion of the species
maximum rate i.e. yi;t = i;T/MAX(yi;), where yi; T is the parameter value of the ith trait
of the jth species at temperature T. This simple transformation preserves the shape
of the thermal response curve and permits rescaling to a mean species value

observed at the optimal temperature, Topt. TOo account for differences in thermal
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optima, Topt, @among species the trait response curves were also adjusted to a
standardised temperature scale, Tsta = T-Toptij + Tref, Where Tret = MEAN(Topt,)). Topt
was approximated as the experimental temperature at which the maximum value was
measured for a given trait i.e. MAX(yi,;). The only exception being mortality rate, which
was alternatively determined as the lowest value recorded in the coldest experimental

treatments.
Model fitting

The best model fit for each trait thermal performance curve was determined using the
ITPC package (Padfield, O’sullivan and Pawar, 2020) in the program R (R Core
Team, 2020). The program first assesses the compatibility of the data against 24
established temperature models before quantifying the model fit over the ecologically
relevant temperature range 0-40°C at 0.01°C intervals. Model selection is based on
Akaike Information Criterion, with the best performing model determined as that with
the lowest AICc value to correct for any biases associated with a small sample size
(Johnson and Omland, 2004). In the case of mortality rate, the best model was a
linear model, which we tested in addition to the 24 listed in the rtPC package. To
derive the final standardised thermal performance curves the model coefficients of
the best performing models were multiplied by the mean trait value measured at the

optimal temperature for each trait.

The Rosenzweig-MacArthur Model

The predator-prey models by Rosenzweig and MacArthur are widely utilised in the
ecological literature to replicate and generalise complex dynamics from a few simple
variables (Sentis, Haegeman and Montoya, 2019; Janssen and van Rijn, 2021). The
model consists of two differential equations describing changes in prey (host) and

predator (parasitoid) populations over time:

2

dx _ 1 X ax

dt rx( K) y(l + aTth) Eq. 1
dy ax?
= = Sy (——mMmM  —) — Eq. 2
dt y(l + aThxz) vy a
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The change in host population size (Eg.1) is given by the logistic growth equation
(Verhulst, 1845), where r is the intrinsic rate of increase (Birch, 1948) and K is the
carrying capacity of the host species. The population growth rate of the parasitoid
(Eq.2) is equal to its parasitisation rate which depends on host density, multiplied by
its assimilation efficiency § (i.e. the proportion of hosts converted into parasitoids).
Parasitisation rate is assumed to follow a Holling type Il functional response, where a
is attack rate and h is handling time (Holling, 1959). A type |l response is typical of
host-parasitoid interactions and is recorded within the FORAGE database (Jeschke,
Kopp and Tollrian, 2004; Uiterwaal et al., 2018). Finally, y is the daily mortality rate of
the parasitoid.

Model simulations

Equations 1 and 2 were parameterised with temperature-dependent variables to
demonstrate the influence of a changing climate on pest control in a host-parasitoid
system. Three relevant response variables were recorded: 1) the maximum
population size of the host, 2) the timing of the first peak and 3) a summary measure
of total pest pressure equal to the sum of the daily abundance of the host over the
season length, hereafter referred to as ‘pest pressure’. The model was coded in R (R
Core Team, 2020) using the package ‘deSolve’ (Soetaert, Petzoldt and Setzer, 2010)
to iterate population dynamics over a set time period of t=180 days to simulate a six-
month growing season in temperate regions following Deutsch et al. (2008) and
Kingsolver et al.(2013). Carrying capacity, K was set to 1000000 to limit its effect on
cyclical dynamics and focus on the interaction between host and parasitoid. Models
were all initiated using a starting population of 10 parasitoids and 100 pests (other

initial conditions not shown here yielded qualitatively similar results).

To understand the relative importance of the temperature-dependence for each
variable we reran models with and without its influence by alternatively holding the
parameter fixed at the reference temperature of 20°C. To ensure equivalence the later
was calculated using the same standardised temperature function. Because five
model variables were found to be temperature-dependent: intrinsic rate of increase of
the host and attack rate, handling time, assimilation efficiency and mortality rate of
the parasitoid, there were 29 possible model combinations in total. The success of
each model was determined by its fit to the 'true’ model, in which all five variables

were temperature dependent. This was evaluated using a sum of squares approach
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by subtracting the predicted values of the ‘true’ model from an alternative model and
squaring the results. Residual values were calculated at 0.01°C increments between
17.3 and 40°C, reflecting the overlapping temperature range of the original studies

and our simulations.

To investigate how differences in thermal adaptation between host and parasitoid
influences population synchrony three alternative scenarios were considered. In one
scenario the host and parasitoid share the same thermal optima, while in the other
two scenarios the thermal performance curves for the parasitoid were shifted 5°C
lower or higher to simulate the population dynamics associated with a relatively
cooler-adapted or warmer-adapted parasitoid species, respectively.

© Agriculture and Horticulture Development Board 2023. All rights reserved 9



Results

The standardised thermal performance curves for the five Rosenzweig-MacArthur
model variables are shown in Figure 1. The best fit models are detailed in the
supplementary table S1, and corresponding parameter values listed in tables S2 and
S3. All five model variables show strong temperature dependence. The thermal
performance curve for the intrinsic rate of increase the host (Fig 1a) reveals a clear
unimodal response that is typical of ectotherms in general and there is a
corresponding response for the parasitoid in respect to assimilation efficiency (Fig
1d). Mortality rate of the parasitoid (Fig 1e) increases steeply with temperature across
the entire experimental range while its attack rate (Fig 1b) and handling time (Fig 1c)
primarily respond to temperature change below 10 and 15°C, respectively. To
investigate the influence of this temperature-dependence on the population dynamics
of this host-parasitoid system under climate change we simulated resulting pest
pressure under 29 different scenarios, in which one or more variables were either
parameterised as temperature-dependent or held constant at a reference

temperature.
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Figure 1: Thermal performance curves for the five variables of the Rosenzweig and MacArthur
Model. a) the Sharpe-Schoolfield (heat-inactivation only) model fitted to standardised data for
the aphid host. The best fit models for the parasitoid variables were b) the Sharpe-Schoolfield
model (cold-inactivation only) for attack rate, c) the Flinn model for handling time, d) the Flinn
model for assimilation efficiency and e) a linear model mortality rate.

Our findings reveal that pest pressure measured over the entire season is primarily
determined by the aphid host’s response to temperature. Intrinsic rate of increase
features in all top ranked models (1-14; table S10) and there is little substantive
difference in predicted responses based on the ‘true’ model vs. the model that only
includes temperature-dependence for the host species if the two species share the
same thermal optima (figure 2; S10-12). This result primarily reflects the influence of
intrinsic rate of increase on the timing and size of peak pest abundance (S3-4).
However, in scenarios where the host and parasitoid do not share the same thermal
optima parameterisation of temperature-dependent parasitoid variables can lead to
guantitatively and qualitatively different predictions of pest control in a changing
climate. For example, partial accounting of temperature-dependence introduces
greater quantitative uncertainty in pest pressure at higher temperatures when the
parasitoid is relatively cold-adapted (figure 2: top panel) but can result in qualitatively
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different predictions when the parasitoid is relatively warm-adapted (figure 2: bottom

panel).
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Figure 2: Influence of temperature-dependent host and parastioid traits on model predictions of pest
pressure experienced over the entire season. Red lines represent the ‘true’ model, blue lines represent
the model where only the hosts intrinsic rate of increase is temperature dependent and grey lines
represent the 12 other combinations of model where one or more parasitoid variables are temperature
dependent. The three scenarios depict the consequences of population asynchrony arising from
differences in thermal adaptation.
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Discussion

Our analysis of the FORAGE database and additional records revealed temperature-
dependence in all five variables of the Rosenzweig-MacArthur model that can be
used to describe the dynamics of host-parasitoid systems. This finding is not
unexpected, since body temperature represents a fundamental constraint on
physiological reaction rates in ectotherms (Huey and Kingsolver, 1989), which in turn
canimpact the organisms behaviour and species interactions (Angilletta,
2009). Empirical studies on individual species typically comprise a small number of
temperature treatments. We established temperature dependence of the model
variables

by using records in the database together with a simple standardisation procedure t
o remove species differences in maximum rate andthe thermal optima before
applying a model selection approach to establish the best fitting thermal performance
curves for each trait. The responses differ considerably between variables, and
although most show the predicted unimodal response, behavioural traits show little
response over much of the temperature range, revealing no indication of detrimental
effects at the highest temperatures. In contrast, previous studies on a wider range of
taxa have demonstrated a much stronger effect of temperature on attack
rate (Englund et al., 2011; Uiterwaal and DelLong, 2020), a parameter which
has great importance based on our elasticity analysis (Supplementary figure
1). While our result might reflect the limitations of our dataset, it is likely
that constraints  on handling time unique  to parasitoid life-history play a
role here (see Jeschke, Kopp and Tollrian, 2002; Moiroux, Boivin and Brodeur,
2018). Given its importance to predicting pest pressure it would be interesting
to investigate, for example, how temperature dependence of handling

time relates to spatial factors such as habitat complexity.

Simulations using the Rosenzweig-MacArthur model reveal that the

temperature dependence of intrinsic rate of increase of the host is of overriding
importance to determining pest dynamics in this aphid-parasitoid system. Within this
model-system this is likely to be due to the reduction of density-

dependent competition on the prey due to the prey population being well

below carrying capacity (Uszko et al., 2017). While parasitoid traits are important in
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determining the timing and size of peak host abundance, incorporating temperature
dependence of parasitoid traits appears to have relatively

little impact on host dynamics in a changing climate when species share the same
thermal optima (Chidawanyika, Mudavanhu and Nyamukondiwa, 2019). In part

this result is expected, given the corresponding unimodal response in assimilation
efficiency. The parasitoid trait that has the greatest

influence on host abundance is mortality rate, which increases steeply with
temperature over the range tested by the experimental studies. It should be noted
that this is a measure of adult longevity and not predation risk and

while it may reflect an energetic cost due to an increase in metabolic

rate it could also reflect a trade-off with reproductive effort, which has no detrimental
impact on individual fitness. For example, depending on the

species ovigeny index (Moiroux, Boivin and Brodeur, 2018), higher temperatures
may increase egg maturation rates (e.g. Berger et al.

2008 Funct Ecol) permitting the individual to lay just as many eggs within

its reduced lifetime. Given differences among species in the slope of this
relationship with temperature, there is a need to better understand the relationships
between adult life-span, ovigeny index and temperature (Moiroux et al. (2018).

When we repeated our simulations under different scenarios of thermal

adaptation between host and parasitoid the relative importance of

temperature dependent parasitoid variables increased but

had contrasting effects. Accounting for temperature dependence of some and not all
variables of a relatively cold-adapted parasitoid led to

greater variation in model predictions in a warmer climate, whereas it reduced
uncertainty when the parasitoid was relatively warm-adapted. However, in the latter
case at least, The addition of temperature-dependent parasitoid function traits such
as mortality rate and assimilation efficiency reduced variation from the ‘true’ model
and that of the pest traits alone, resulting in similar qualitative and

guantitative predictions. In theory, host and parasitoid thermal niches should be
closely matched (Angilletta, 2006; Chidawanyika, Mudavanhu and Nyamukondiwa,
2019), but in practice parasitoids commonly have a lower thermal optimum than
their hosts (Furlong and Zalucki, 2017; Agosta, Joshi and Kester,

2018). If parasitoids and other natural enemies become less effective in a warmer
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climate it raises concerns for food security and has important implications for the
efficacy of biological control agents and the impact of alien species where the
thermal optima of aphid and parasitoid differ (Yan et al., 2017). Our

study demonstrates the influence of asynchrony on model predictions and so it
would be wise to investigate further sources of asynchrony which may arise
between host and parasitoid.

One potential source of population asynchrony not investigated here is the
influence of temperature on the development rate of the parasitoid. Implicit to non-
stage-structured discrete and continuous time model models is the concept of
developmental synchrony between host and parasitoid, based on the assumption
that parasitoid development is a constant proportion of that of its host, somewhere
in the range of 0.5 to 1.5 (Godfray et al. 1994). It is known that the pupal stage of
the parasitoid is highly temperature dependent (Damien and Tougeron, 2019) and
that extreme temperatures experienced during this stage have important
implications for population stability (Hance et al., 2007). If the temperature
sensitivity of the pupal stage differs to the development rate of its host then this
source of asynchrony could lead to population instability. Trait databases ought to
include such data so that more detailed host-parasitoid models may be employed to

explore such consequences.

Example extensions of the Rosenzweig-MacArthur model include stage-structured
predators or prey, including invulnerable stage classes (Godfray, Hassell and Holt,
1994), spatial heterogeneity and distribution of attack, e.g. prey-refuges (Beay and
Saija, 2020), aggregated parasitoid attack, host and resource quality (May,

1978) and host-switching and the inclusion of predator competition and prey-
dispersal (Barman and Ghosh, 2021). Such additional variables might also be
temperature dependent, for instance, temperature could impact a plants ability to
recruit parasitoids through changes in volatile organic compounds, leading to
increased or decreased presence of a plant within a resource patch (Boullis, Francis
and Verheggen, 2015) or temperature could alter plant quality e.g. carbon-nitrogen
ratios, and thus the development time of host and therefore parasitoid (Facey et al.,
2014). As the trait database expands to include other species and

traits the wider consequences of
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temperature change on the community can be explored further. As a caveat, as
model complexity increases it becomes more difficult to parameterise the model and
the model becomes less transferable. This is particularly true in data poor situations,
as a simplified example, it makes little sense to add a prey species to a model, if
little is known about predator consumption rates (May, 1973; Collie et al.,

2016). Simplified models are excellent platforms to address broad questions in
ecology, providing early guidance and indications of vulnerable components of

model systems in the face of limited data(Holling, 1973).

Functional trait databases have great potential to explore responses to climate
change but as we have demonstrated their utility is currently limited by the
temperature treatments applied in the original empirical studies. For

example, while the FORAGE data base includes a total of 23 input

records of parasitoid species for 16 different temperatures covering the biologically
relevant range between 4 and 38 °C, assumed differences in thermal optima among
species, perhaps due to their geographical origin made it difficult to combine
results. It was therefore necessary to account for differences in thermal

optima among species, but this was only possible in those studies that

had recorded the trait response at three or more temperatures (possible for just
three of eight species). A related issue was identified in a previous

study that highlighted how apparent differences in thermal sensitivity can arise as an
artefact of the range of temperatures measured (Pawar et al., 2016). Many studies
fail to capture the full range of a trait response to temperature, often excluding the
highest temperatures necessary to adequately estimate both

the Topt, and the breadth of a performance curve (Knies and Kingsolver,

2015). Whilst our method of standardisation offers one potential solution to

limited data,it should be noted that at least seven temperature treatments are
needed to fit a more complex model such as the Sharpe-Schoolfield equation to a
thermal performance curve (Wagner et al.(1984), and still more are

needed to statistically distinguish among alternative models (Angilletta 2006). The
scale of such experiments is logistically challenging

but is necessary to fully understand and predict responses to a changing climate.
In the absence of more detailed datasets, geographical origin of the population
being studied might serve as a useful proxy for thermal adaptation. There is a trend
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among insects, and ectotherms in general, for higher thermal optima and narrower
thermal tolerances toward the equator, reflecting adaptation to a higher and more
stable environmental temperature (Deutsch et al., 2008). Including geographic origin
of the populations used in traits database could therefore be used to help correct for
thermal adaptation when more detailed information on thermal response

curves is lacking. It may therefore be necessary to account for local adaptation, in
which case geographical origin of the population used in the study may be the most
appropriate proxy For example, D.rapae is known to parasitise 98 species of aphids
across 87 countries (Singh and Singh, 2015), with evidence of host

specialisations (Antolin, Bjorksten and Vaughn, 2006).

Conclusions

Functional trait databases are developing into important tools for understanding global trends
in ecology and evolution(Taugourdeau et al., 2014; Violle, Borgy and Choler, 2015). In a bid
to understand species responses to climate change the development of temperature-
dependent trait databases are necessary. By combining these data with  population
models itis possible to improve ecological forecasting in a warming climate (Walters,
Blanckenhorn and Berger, 2012). Our study reveals that while the response of hostto
temperature appears to be the primary driver of pest dynamics in this aphid-parasitoid
system, it is dependent upon the implicit assumption thatthey share thermal
optima. Evidence suggests that differences in thermal
adaptation among interacting species can be enough to create population
asynchrony and qualitatively different predictions. Our analyses help to identify gaps in the
trait database which ought to be prioritised.

Knowledge and Technology Transfer

Research to be presented at the British Ecological Society Across Borders Conferences 2021
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Supplementary Figure 1
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Figure S1: Elasticity analysis of the Rosenzweig-MacArthur Model using mean optimum rates of model parameters taken
from host-parasitoid systems documented within this manuscript.

Figure 1 highlights that the Rosenzweig-MacArthur model is particularly sensitive to
decreases in attack rate and assimilation efficiency leading to increased pest-pressure
throughout a 180-day period. Additionally, an increase in assimilation efficiency can yield a
significant decrease in pest populations.

A 10% increase in intrinsic rate of increase can increase the size of the peak aphid
abundance by over 10% whilst decreases in intrinsic rate of increase, attack rate and
assimilation efficiency can lead to substantial decreases in peak aphid abundance.

Supplementary results: thermal performance curves

The thermal performance curve for the intrinsic rate of increase for the host

was constructed from data on seven species of aphid associated

with the respective parasitoid species listed in the FORAGE database. The unimodal
relationship evident in the standardised data is described equally

best by the Pawar (Kontopoulos et al., 2018), Sharpe-Schoolfield equation with only high-
temperature inactivation (Schoolfield, Sharpe and Magnuson, 1981), and

Weibull (Angilletta, 2006) set of models (AAICc > 1.25 to next best model, see
supplementary table S1 for model comparisons and tables S2 and S3 for parameter
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estimates). The thermal optima for the individual species range from 17 to 35°C (mean =
25.9°C).

Attack rate data for the parasitoid were sourced from the FORAGE database (Uiterwaal et
al., 2018). A total of three species had data points spanning 10°C yielding a total of 13 data
points with thermal optima’s ranging from 14 to 20°C and a mean of 17°C. The relationship
between temperature and attack rate was best described by the Sharpe-Schoolfield (low
temperature inactivation only) model (Schoolfield, Sharpe and Magnuson, 1981) closely
followed by the Modified Gaussian (Angilletta, 2006) model and reveals a sigmoidal shaped
response to temperature with little temperature dependence of the parameter occurring at
higher temperatures (Figure 1b) (AAICc > 0.885 to next best model, Supplementary table S4
for model comparisons and tables S5 for parameter estimates).

Temperature dependant handling time data were also extracted from

the FORAGE database (Uiterwaal et al., 2018) yielding 13 data points across three species
with thermal optima ranging from 14 to 30°C and a mean of 23°C. The temperature
dependence of handling time was best described by the Flinn model (Flinn, 1991) and
closely followed by the Modified Gaussian model (Angilletta, 2006) (AAICc > 2.04 to next
best model ,supplementary table S6 for model comparisons and tables S7 for parameter
estimates). High handling times were present at lower temperatures, decreasing as
temperature increases and plateauing at the standardised temperature of 23 °C.

20 data points across four species of parasitoid in the FORAGE database were identified
from the literature with thermal optima’s ranging from 15 to 26°C and a mean of 22.8°C.
The temperature dependence of assimilation efficiency was also best described by the Flinn
model (Flinn, 1991),closely followed by the Gaussian model(Lynch and Gabriel,

1987) (AAICc > 0.25 to next best model ,Supplementary table S8 for model comparisons
and tables S9 for parameter estimates). and displays a clear unimodal shape with the rate
increasing to a thermal optimum and slowly declining

15 data points across three species of parasitoid in the FORAGE database were sourced and
calculated for our dataset with minimal temperatures ranging from 15 to 18°C with a mean
of 16.7°C. Mortality rate increases linearly with temperature and was modelled using the
Sharpe-Schoolfield equation(AAICc > 3.2012162 to next best model(Guassian)) (Schoolfield,
Sharpe and Magnuson, 1981)(Supplementary table S10).

Thermal performance curves of model parameters

Supplementary table 1
Table S1: Model performance fitting standardised intrinsic rate of increase data to standardised temperature
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Intrinsic rate of increase model fitting

model_name sigma AIC AlCc BIC df.residual
pawar 0.1464508 -32.3882615 -30.5132615 -24.200331 34
sharpeschoolhigh 0.1464508 -32.3882615 -30.5132615 -24.200331 34
weibull 0.1488826 -31.1366187 -29.2616187 -22.948688 34
oneill 0.1500927 -30.5214253 -28.6464253 -22.333494 34
sharpeschoolfull  0.1490099 -29.3754067 -25.6420734 -17.912304 32
ratkowsky 0.1579523 -26.6423531 -24.7673531 -18.454422 34
flinn 0.1689149 -22.4411134 -21.2289922 -15.890769 35
boatman 0.1624917 -23.6234089 -20.9137315 -13.797892 33
gaussian 0.1715873 -21.2481160 -20.0359947 -14.697771 35
modifiedgaussian 0.1735510 -19.4847976 -17.6097976 -11.296867 34
beta 0.1768112 -17.2048003 -14.4951228 -7.379283 33
johnson_lewin 0.1885047 -13.2032955 -11.3282955 -5.015365 34
briere2 0.1947235 -10.7365197 -8.8615197 -2.548589 34
quadratic 0.2147314 -4.2016397 -2.9895185  2.348705 35
thomas1 0.2172630 -2.4123939 -0.5373939  5.775537 34
thomas2 0.2206759 -0.3622187  2.3474587  9.463298 33
kamykowski 0.2208345 -0.3076303  2.4020471  9.517887 33
lactin2 0.2428439  6.0471953  7.9221953 14.235126 34
rezende 0.2526748  9.0631905 10.9381905 17.251121 34
hinshelwood 0.2618092 11.7621573 13.6371573 19.950088 34
spain 0.2632381 12.1758187 14.0508187 20.363750 34
sharpeschoollow 0.3137528 25.5173591 27.3923591 33.705290 34
joehnk 03161093 26.9516325 29.6613099 36.777149 33
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Supplementary table 2

TableS2:Parameter estimated of the Sharpes-Schoolfield model for intrinsic rate of increase

model_name
sharpeschoolhigh r_tref 0.3636770 0.04399072
sharpeschoolhigh e
sharpeschoolhigh eh

sharpeschoolhigh th

term estimate std.error

Supplementary table 3

Table S3:Parameter estimates for the Pawar model for intrinsic rate or increase

model name term estimate std.error
pawar r_tref 0.3636770 0.04399072
pawar e 0.9452339 0.17897053
pawar eh 4.6610816 0.63489593
pawar topt 24.7189739 0.46690616

Supplementary table 4

0.9452339 0.17897052

4.6610816 0.63489594

26.9822611 0.77988382

statistic

p.value

8.267129 1.199078e-09

5.281506 7.404098e-06

7.341489 1.657433e-08

34.597796 4.359708e-28

statistic

8.267129

5.281506

7.341489

52.942059

p.value

1.199079e-09
7.404103e-06
1.657433e-08

2.967376e-34
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Table S4:Model performance fitting standardised attack rate data to standardised
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temperature_

Attack Rate model fitting

model_name sigma AIC AlCc BIC df.residual
sharpeschoollow 0.06013738 -30.9772378 -22.4058092 -28.1524910 9
modifiedgaussian 0.06222008 -30.0920372 -21.5206086 -27.2672904 9
weibull 0.08621313 -21.6122727 -13.0408442 -18.7875260 9
thomas2 0.07409709 -25.0810533 -11.0810533 -21.6913571 8
thomas1 0.09324243 -19.5743837 -11.0029551 -16.7496369 9
kamykowski 0.07622536 -24.3447881 -10.3447881 -20.9550919 8
boatman 0.08285143 -22.1775641 -8.1775641 -18.7878680 8
quadratic 0.12467933 -12.6505994 -7.6505994 -10.3908019 10
spain 0.12606570 -11.7327742 -3.1613456 -8.9080274 9
gaussian 0.15075888 -7.7122455 -2.7122455 -5.4524481 10
flinn 0.16970599 -4.6342170  0.3657830 -2.3744196 10
sharpeschoolfull  0.08250009 -22.0239596  0.3760404 -18.0693141 7
oneill 0.16099601 -5.3737880  3.1976406 -2.5490412 9
pawar 0.16155551 -5.2835889  3.2878397 -2.4588421 9
sharpeschoolhigh 0.16155551 -5.2835889  3.2878397 -2.4588421 9
ratkowsky 0.16495487 -4.7421878  3.8292407 -1.9174410 9
lactin2 0.18260134 -2.0997194  6.4717092  0.7250274 9
briere2 0.18431352 -1.8570637  6.7143648  0.9676831 9
rezende 0.18759875 -1.3977178  7.1737108  1.4270290 9
hinshelwood 0.19058660 -0.9868839  7.5845447  1.8378629 9
delong 0.16355868 -4.4943693  9.5056307 -1.1046731 8
johnson_lewin 0.21755094  2.4536015 11.0250301  5.2783483 9
joehnk 0.30619755 11.8091556 25.8091556 15.1988517 8
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Supplementary table 5

Table S5: Parameter estimates for the Sharpes-Schoolfield model for Attack Rate

model name

sharpeschoollow
sharpeschoollow
sharpeschoollow

sharpeschoollow

Supplementary table 6

term

estimate std.error

r_tref 0.9519818 0.03290093

el

tl

0.0000000 0.02319125

5.5620338 1.19281466

9.1880287 0.29575694

statistic

28.934798

0.000000

4.662949

31.066148

p.value
3.428376e-10
1.000000e+00
1.180294e-03

1.818829e-10

Table S6:Model performance fitting standardised handling time data to standardised temperature
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Handling time model fitting

model name sigma AIC AlCc BIC df.residual
flinn 1.615003 53.94442 58.94442 56.20422 10
modifiedgaussian 1.486189 52.41357 60.98500 55.23832 9
gaussian 2087393 60.61548 6561548 62.87527 10
ratkowsky 1.824305 57.74315 66.31458 60.56790 9
joehnk 1.570305 54.31381 68.31381 57.70351 8
beta 1.578556 54.45007 68.45007 57.83976 8
thomas1 2.151862 62.03665 70.60807 64.86139 9
weibull 2.200376 62.61631 71.18774 65.44106 9
oneill 2201039 62.62414 7119557 65.44889 9
boatman 2.070123 61.49861 75.49861 64.88831 8
quadratic 3.207797 71.78686 76.78686 74.04666 10
spain 3.687486 76.04055 84.61197 78.86529 9
thomas2 3.305663 73.66736 87.66736 77.05706 8
rezende 4293891 79.99901 88.57043 82.82375 9
delong 3460653 74.85869 88.85869 78.24839 8
hinshelwood 4714119 82.42659 90.99802 85.25134 9
lactin2 5394715 85.93289 94.50432 88.75764 9
briere2 5.661157 87.18631 95.75774 90.01106 9
kamykowski 7.217662 93.97061 107.97061 97.36031 8
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Supplementary table 7

Table S7: Parameter estimates for the Flinn model for handling time data

model_name term  estimate std.error statistic p.value
flinn a -2.3198717 2.4050423 -0.9645867 0.3574984
flinn b 0.1072038 0.3213438 0.3336109 0.7455631
flinn C 0.0000000 0.0106117 0.0000000 1.0000000

Supplementary table 8
Table S8: :Model performance fitting standardised assimilation efficiency data to standardised temperature
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Assimilation efficiency model fitting

model_name sigma AlC AlCc BIC df.residual
flinn 0.2338140 3377982 6.044649 7.360912 17
gaussian 0.2353017 3.631689 6.298356 7.614618 17
quadratic 0.2356966 3.698774 6.365441 7.681703 17
rezende 0.2307986 3.646286 7.932000 8.624947 16
oneill 0.2333450 4.085182 8.370896 9.063843 16
spain 0.2333712 4.089673 8375387 9.068334 16
hinshelwood 0.2334678 4.106232 8391946 9.084893 16
lactin2 0.2334715 4.106858 8392572 9.085519 16
Jjohnson_lewin 0.2338207 4.166636 8.452350 9.145297 16
pawar 0.2338207 4.166636 8452350 9.145297 16
sharpeschoolhigh 0.2338207 4.166636 8452350 9.145297 16
thomas1 0.2356409 4.476816 8762530 9.455477 16
weibull 0.2372895 4.755688 9.041402 9.734349 16
thomas?2 0.2403837 5983142 12.444680 11.957536 15
beta 0.2410599 6.095501 12.557040 12.069895 15
boatman 0.2422913 6.299316 12.760854 12.273709 15
joehnk 0.2423273 6305264 12.766803 12.279658 15
delong 0.2519137 7.857155 14.318693 13.831548 15
ratkowsky 0.2770402 10.950970 15.236684 15.929631 16
sharpeschoollow 0.2774774 11.014042 15.299756 15.992703 16
briere2 0.2839714 11.939403 16.225117 16.918064 16
sharpeschoolfull  0.2582716 9.474294 18.807627 16.444420 14
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Supplementary table 9

Table S9: Parameter estimates for the Flinn model for assimilation efficiency data

model name term

flinn

flinn

flinn

estimate

std.error

a 1.571528138 0.945212441

b -0.125209631 0.086955393

C 0.002812089 0.001952515

Supplementary table 10

Mortality rate model fitting

statistic

p.value

1.662619 0.1147146

-1.439929 0.1680492

1.440239 0.1679628

model name sigma AIC AlCc BIC df.residual
Linear 0.5751793 29.82944 32.01126 32 13
quadratic 0.58647939905282 31.2124706243726 35.2124706243726 34.0446714287815 12
spain 0.612350088423197 33.2022984681301 39.8689651347967 36.7425494736411 11
briere2 0.613002311548583 33.2342349063496 39.9009015730163 36.7744859118606 11
ratkowsky 0.613262213981274 33.2469516945061 39.9136183611727 36.7872027000171 11
hinshelwood 0.623311674593674 33.7345739201889 40.4012405868555 37.2748249256999 11
thomas2 0.641673672657747 35.1759172977084 45.6759172977084 39.4242185043217 10
kamykowski  0.642229060317274 35.2018719598446 45.7018719598446 39.4501731664579 10
boatman 0.642243250291282 35.2025347989214 45.7025347989214 39.4508360055347 10
Parameter Cool-adapted Shared-thermal optima [Warm-adapted

a 0.108 0.108 1.08

b 0.0581 -1.2019 +1.2019
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Tref 15 20 25

Y at Tref 1.4981 1.4981 1.4981

Sum of squares results
Supplementary table 10

Table S10: Sum of squared differences between each model scenario and the full temperature depending model.

Squared Residual difference from full
Scenario Parameters model

29 Full Model 0.000000e+00

Intrinsic rate of Increase, Predator Mortality Rate, Assimilation Efficiency,

24 1.585576e+02

Handling Time
25 Intrinsic Rate of Increase, Predator Mortality, Assimilation Efficiency,Attack Rate 3.617360e+04
17 Intrinsic Rate of Increase, Predator Mortality, Assimilation Efficiency 3.978559¢e+04
19 Intrinsic Rate of Increase, Predator Mortality, Attack Rate 2.047243e+06
18 Intrinsic Rate of Increase, Predator Mortality, Handling Time 2.194560e+06
26 Intrinsic Rate of Increase,Predator Mortality,Handling Time, Attack Rate 2.198492e+06
22 Intrinsic Rate of Increase, Attack Rate, Handling Time 7.407045e+06
9 Intrinsic Rate of Increase, Handling Time 7.455294e+06
10 Intrinsic Rate of Increase, Attack rate 8.394226e+06
2 Intrinsic Rate of Increase 8.446590e+06
27 Intrinsic Rate of Increase, Assimilation Efficiency, Attack Rate, Handling Time 2.423739e+07
20 Intrinsic Rate of Increase, Assimilation Efficiency,Handling Time 2.430462e+07
21 Intrinsic Rate of Increase, Assimilation Efficiency,Attack Rate 2.570995e+07
8 Intrinsic Rate of Increase, Assimilation Efficiency 2.578161e+07
12 Predator Mortality Rate, Handling Time 7.686842e+07
13 Predator Mortality, Attack Rate 7.915172e+07
3 Predator Mortality 7.919817e+07
28 Assimilation Efficiency, Predator Mortality Rate, Attack Rate, Handling Time 1.942582e+08
5 Handling Time 1.990105e+08
11 Predator Mortality Rate, Assimilation Efficiency 2.005741e+08
16 Attack Rate, Handling Time 2.006968e+08
6 Attack Rate 2.066488e+08
7 Intrinsic Rate of Increase, Predator Mortality 2.066488e+08
1 Null Model 2.068485e+08
23 Assimilation Efficiency,Handling Time, Attack Rate 5.364317e+08
14 Assimilation Efficiency, Handling Time 5.420561e+08
4 Assimilation Efficiency 5.576798e+08
15 Assimilation Efficiency, Attack Rate 5.626523e+08
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Supplementary table 11

TableS11: Sum of squared differences between each model scenario and the full temperature depending model with
a cool-adapted parasitoid .

Squared Residual difference from full

Scenario Parameters model
29 Full Model 0.000000e+00
24 :;:glsi:griti;zf Increase, Predator Mortality Rate, Assimilation Efficiency, 67528426401
25 Intrinsic Rate of Increase, Predator Mortality, Assimilation Efficiency,Attack Rate 7.750437e+04
17 Intrinsic Rate of Increase, Predator Mortality, Assimilation Efficiency 8.198355e+04
22 Intrinsic Rate of Increase, Attack Rate, Handling Time 7.905668e+06

9 Intrinsic Rate of Increase, Handling Time 7.947544e+06
10 Intrinsic Rate of Increase, Attack rate 9.103860e+06
2 Intrinsic Rate of Increase 9.151534e+06
7 Intrinsic Rate of Increase, Predator Mortality 1.003322e+07
19 Intrinsic Rate of Increase, Predator Mortality, Attack Rate 1.006801e+07
18 Intrinsic Rate of Increase, Predator Mortality, Handling Time 1.119463e+07
26 Intrinsic Rate of Increase,Predator Mortality,Handling Time, Attack Rate 1.123275e+07
27 Intrinsic Rate of Increase, Assimilation Efficiency, Attack Rate, Handling Time 6.417592e+07
20 Intrinsic Rate of Increase, Assimilation Efficiency,Handling Time 6.431263e+07
21 Intrinsic Rate of Increase, Assimilation Efficiency,Attack Rate 6.858509e+07
8 Intrinsic Rate of Increase, Assimilation Efficiency 6.873003e+07
13 Predator Mortality, Attack Rate 7.494501e+07
3 Predator Mortality 7.495343e+07
12 Predator Mortality Rate, Handling Time 7.861437e+07
5 Handling Time 2.097947e+08
16 Attack Rate, Handling Time 2.115622e+08
6 Attack Rate 2.182437e+08
1 Null Model 2.184721e+08
28 Assimilation Efficiency, Predator Mortality Rate, Attack Rate, Handling Time 2.421827e+08
11 Predator Mortality Rate, Assimilation Efficiency 2.500955e+08
23 Assimilation Efficiency,Handling Time, Attack Rate 9.730494e+08
14 Assimilation Efficiency, Handling Time 9.839801e+08
4 Assimilation Efficiency 1.016494e+09
15 Assimilation Efficiency, Attack Rate 1.026296e+09

Supplementary table 12
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Table S12 : Sum of squared differences between each model scenario and the full temperature depending model with a
warm-adapted parasitoid .

Squared Residual difference from full

Scenario Parameters model
29 Full Model 0.00
25 |Intrinsic Rate of Increase, Predator Mortality, Assimilation Efficiency,Attack Rate 56043.45
24 :::glsiir:grajrti;oef Increase, Predator Mortality Rate, Assimilation Efficiency, 72964417
17 Intrinsic Rate of Increase, Predator Mortality, Assimilation Efficiency 94773117
26 Intrinsic Rate of Increase,Predator Mortality,Handling Time, Attack Rate 6656020.74
19 Intrinsic Rate of Increase, Predator Mortality, Attack Rate 6981274.99
18 Intrinsic Rate of Increase, Predator Mortality, Handling Time 10450628.86

7 Intrinsic Rate of Increase, Predator Mortality 10865096.59
27 Intrinsic Rate of Increase, Assimilation Efficiency, Attack Rate, Handling Time 13541453.21
21 Intrinsic Rate of Increase, Assimilation Efficiency,Attack Rate 13852294.97
20 Intrinsic Rate of Increase, Assimilation Efficiency,Handling Time 17092324.95

8 Intrinsic Rate of Increase, Assimilation Efficiency 17485609.59
22 Intrinsic Rate of Increase, Attack Rate, Handling Time 23514336.97
10 Intrinsic Rate of Increase, Attack rate 23932623.14

9 Intrinsic Rate of Increase, Handling Time 28742276.48

2 Intrinsic Rate of Increase 29209349.58
13 Predator Mortality, Attack Rate 105817150.50
12 Predator Mortality Rate, Handling Time 108252993.40

3 Predator Mortality 108691181.30
11 Predator Mortality Rate, Assimilation Efficiency 154857570.50
28 Assimilation Efficiency, Predator Mortality Rate, Attack Rate, Handling Time 156270897.40

6 Attack Rate 211788881.00
16 Attack Rate, Handling Time 212577172.10

5 Handling Time 215978269.50

1 Null Model 216584878.10
23 Assimilation Efficiency,Handling Time, Attack Rate 311026332.10
14 Assimilation Efficiency, Handling Time 313289738.70

4 Assimilation Efficiency 313748287.40
15 Assimilation Efficiency, Attack Rate 313809294.10
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